skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Parkinson, Carolyn"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Even in our highly interconnected modern world, geographic factors play an important role in human social connections. Similarly, social relationships influence how and where we travel, and how we think about our spatial world. Here, we review the growing body of neuroscience research that is revealing multiple interactions between social and spatial processes in both humans and non-human animals. We review research on the cognitive and neural representation of spatial and social information, and highlight recent findings suggesting that underlying mechanisms might be common to both. We discuss how spatial factors can influence social behaviour, and how social concepts modify representations of space. In so doing, this review elucidates not only how neural representations of social and spatial information interact but also similarities in how the brain represents and operates on analogous information about its social and spatial surroundings. This article is part of the theme issue ‘The spatial–social interface: a theoretical and empirical integration’. 
    more » « less
  2. Social interactions unfold within networks of relationships. How do beliefs about others’ social ties shape—and how are they shaped by—expectations about how others will behave? Here, participants joined a fictive online game-playing community and interacted with its purported members, who varied in terms of their trustworthiness and apparent relationships with one another. Participants were less trusting of partners with untrustworthy friends, even after they consistently showed themselves to be trustworthy, and were less willing to engage with them in the future. To test whether people not only expect friends to behave similarly but also expect those who behave similarly to be friends, an incidental memory test was given. Participants were exceptionally likely to falsely remember similarly behaving partners as friends. Thus, people expect friendship to predict similar behavior and vice versa. These results suggest that knowledge of social networks and others’ behavioral tendencies reciprocally interact to shape social thought and behavior. 
    more » « less
  3. Loneliness is detrimental to well-being and is often accompanied by self-reported feelings of not being understood by other people. What contributes to such feelings in lonely people? We used functional MRI of 66 first-year university students to unobtrusively measure the relative alignment of people’s mental processing of naturalistic stimuli and tested whether lonely people actually process the world in idiosyncratic ways. We found evidence for such idiosyncrasy: Lonely individuals’ neural responses were dissimilar to those of their peers, particularly in regions of the default-mode network in which similar responses have been associated with shared perspectives and subjective understanding. These relationships persisted when we controlled for demographic similarities, objective social isolation, and individuals’ friendships with each other. Our findings raise the possibility that being surrounded by people who see the world differently from oneself, even if one is friends with them, may be a risk factor for loneliness. 
    more » « less
  4. Abstract Successful communication and cooperation among different members of society depends, in part, on a consistent understanding of the physical and social world. What drives this alignment in perspectives? We present evidence from two neuroimaging studies using functional magnetic resonance imaging (fMRI; N  = 66 with 2145 dyadic comparisons) and electroencephalography (EEG; N  = 225 with 25,200 dyadic comparisons) to show that: (1) the extent to which people’s neural responses are synchronized when viewing naturalistic stimuli is related to their personality profiles, and (2) that this effect is stronger than that of similarity in gender, ethnicity and political affiliation. The localization of the fMRI results in combination with the additional eye tracking analyses suggest that the relationship between personality similarity and neural synchrony likely reflects alignment in the interpretation of stimuli and not alignment in overt visual attention. Together, the findings suggest that similarity in psychological dispositions aligns people’s reality via shared interpretations of the external world. 
    more » « less
  5. Abstract Knowledge of someone’s friendships can powerfully impact how one interacts with them. Previous research suggests that information about others’ real-world social network positions—e.g. how well-connected they are (centrality), ‘degrees of separation’ (relative social distance)—is spontaneously encoded when encountering familiar individuals. However, many types of information covary with where someone sits in a social network. For instance, strangers’ face-based trait impressions are associated with their social network centrality, and social distance and centrality are inherently intertwined with familiarity, interpersonal similarity and memories. To disentangle the encoding of the social network position from other social information, participants learned a novel social network in which the social network position was decoupled from other factors and then saw each person’s image during functional magnetic resonance imaging scanning. Using representational similarity analysis, we found that social network centrality was robustly encoded in regions associated with visual attention and mentalizing. Thus, even when considering a social network in which one is not included and where centrality is unlinked from perceptual and experience-based features to which it is inextricably tied in naturalistic contexts, the brain encodes information about others’ importance in that network, likely shaping future perceptions of and interactions with those individuals. 
    more » « less
  6. Abstract Convergent processing of the world may be a factor that contributes to social connectedness. We use neuroimaging and network analysis to investigate the association between the social-network position (as measured by in-degree centrality) of first-year university students and their neural similarity while watching naturalistic audio-visual stimuli (specifically, videos). There were 119 students in the social-network study; 63 of them participated in the neuroimaging study. We show that more central individuals had similar neural responses to their peers and to each other in brain regions that are associated with high-level interpretations and social cognition (e.g., in the default mode network), whereas less-central individuals exhibited more variable responses. Self-reported enjoyment of and interest in stimuli followed a similar pattern, but accounting for these data did not change our main results. These findings show that neural processing of external stimuli is similar in highly-central individuals but is idiosyncratic in less-central individuals. 
    more » « less
  7. Abstract Human behavior is embedded in social networks. Certain characteristics of the positions that people occupy within these networks appear to be stable within individuals. Such traits likely stem in part from individual differences in how people tend to think and behave, which may be driven by individual differences in the neuroanatomy supporting socio-affective processing. To investigate this possibility, we reconstructed the full social networks of three graduate student cohorts ( N  = 275; N  = 279; N  = 285), a subset of whom ( N  = 112) underwent diffusion magnetic resonance imaging. Although no single tract in isolation appears to be necessary or sufficient to predict social network characteristics, distributed patterns of white matter microstructural integrity in brain networks supporting social and affective processing predict eigenvector centrality (how well-connected someone is to well-connected others) and brokerage (how much one connects otherwise unconnected others). Thus, where individuals sit in their real-world social networks is reflected in their structural brain networks. More broadly, these results suggest that the application of data-driven methods to neuroimaging data can be a promising approach to investigate how brains shape and are shaped by individuals’ positions in their real-world social networks. 
    more » « less
  8. Have you ever wondered how your friends impact how you see the world? Or how you are able to keep track of the many different people in your life? To study these questions, scientists have begun to look at people’s social networks and their brains at the same time. In this article, we introduce this area of study and discuss how scientists use ideas from both neuroscience and mathematics to examine these questions. We also highlight some recent discoveries that reveal both how our brains support our ability to socialize with others and how our relationships with other people are related to how we use our brains. 
    more » « less